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Abstract

In particle-based plasma simulation, when dealing with source terms such as ionization, emission from boundaries, etc.,
the total number of particles can grow, at times, exponentially. Problems involving the spatial expansion of dynamic plas-
mas can result in statistical under representation of particle distributions in critical regions. Furthermore, when considering
code optimization for massively parallel operation, it is useful to maintain a uniform number of particles per cell. Accord-
ingly, we have developed an algorithm for coalescing or fissioning particles on 2D and 3D orthogonal grids that is based on
a method of Assous et al. [F. Assous, T. Pougeard Dulimbert, J. Segre, J. Comput. Phys. 187 (2003) 550]. We present the
algorithm and describe in detail its application to particle-in-cell simulations of gas ionization/streamer formation and
dynamic, expanding plasmas.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The broad applicability of the particle-in-cell (PIC) method to fundamental and applied problems in plasma
physics is due to the economy of representing six-dimensional phase space by a finite number of macroparti-
cles [1,2]. For many problems, the number of macroparticles used in a simulation is easily controlled by lim-
iting the initial number or the frequency of new particle creation. In many cases, however, the number of
particles can grow without bound. This behavior is particularly troublesome in complex simulations where
particle interactions with other particles and with surfaces are treated. Neutral gas ionization in which second-
ary ionization or avalanche occurs can lead to exponential growth of macroparticles. Other related problems
involve the stimulated emission of particles by surface bombardment of other particles. Conversely, a related
problem in particle simulation involves having too few particles in a cell. This can lead to artificial field
enhancement and inadequate representation of particle distribution functions.

Pairwise coalescence (see Ref. [3]) of particles has been utilized previously to manage macroparticle number
in PIC simulations. The method searches for particles that have matching momenta to a specified tolerance in
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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a given cell. The two particles are combined into a single particle with mass-averaged position and momentum.
The global charge, mass, and momentum are exactly conserved; however, small corrections for local charge
conservation must be made in electromagnetic simulation. The energy conservation is only as good as the
specified tolerance and necessarily results in cooling because the velocity space is compressed.

In this paper, we discuss an adaptive particle management (APM) algorithm built upon the formalism out-
lined by Assous et al. [4]. Here, basic quantities such as charge, momentum, and energy are globally and
locally conserved without need of correction. Our modification and extension of the algorithm involves an effi-
cient approach to the accurate reproduction of the initial spatial and velocity distributions within a cell. Based
on a fixed orthogonal grid, the efficiency and accuracy of the method is optimized by characterizing the ori-
ginal particle phase space within a cell and placing new particles in the more densely populated regions of that
space. In addition, momentum and energy conservation are enforced in such a way that the velocity distribu-
tion of the replacement particles closely approximates that of the original set. The method can be used to
reduce or increase particle number in each cell. This can be useful in maintaining a uniform load balance
for parallel simulation. Unlike the pairwise method, APM permits accurate conservation by making use of
many particles.

In Section 2, we present the APM formalism which conserves particle quantities on an orthogonal grid.
Grid (and total) particle weights, momenta, and energy are conserved while preserving the essential features
of the velocity distributions. In Section 3, an illustrative example of particle coalescence in a single cell is pre-
sented. The algorithm is then tested on two stressing gas breakdown problems in which the macroparticle
number grows exponentially, quickly becoming unmanageable. The first problem simulates streamer forma-
tion and propagation from an applied electric field in hydrogen gas and the second involves the breakdown
of nitrogen gas by an intense relativistic electron beam. In both cases, the results reasonably reproduce ava-
lanche rates when compared to simulations without APM, while the simulations using APM exhibit dramat-
ically reduced computational run times. As an example of the utility of the APM fissioning feature, the
simulation of an expanding plasma is examined in which particle statistics otherwise degrade with time. Here,
the APM algorithm maintains a constant number of particles per cell as the plasma volume increases. The
algorithm as described here has been implemented in the 3D PIC code LSP [5] and all sample calculations pre-
sented in Section 3 were carried out using this code. Conclusions are presented in Section 4.

2. APM method

The APM approach is based on the general method outlined by Assous et al. [4]. It is a local approximation
in that particles in each computational cell are coalesced (or fissioned) into a smaller (or larger) number. The
user chooses N, the maximum (or minimum) allowable number of particles in a single cell, and M, the target
number of replacement particles after coalescence (after fissioning). The new set of particle weights or masses
is calculated according to a prescription outlined in Ref. [4], and generalized here to 2D and 3D orthogonal
grids. The method conserves the grid weights (4 and 8 corner weights in 2D and 3D, respectively), and also the
total particle weights. Particle momenta are then calculated in a similar fashion. The final step achieves energy
conservation, while at the same time preserving (in a statistical sense) the properties of the relativistic velocity
distributions of the original N particles.

2.1. Particle weights

The method allows for arbitrary location of the M replacement particles within the cell. (The first attempts
at implementation were done with the M particles placed on a uniform sub-cell grid, which proved to be highly
inefficient and was later modified.) At each grid node the charge is given by
Qi ¼
XN

n¼1

wnkiðxnÞ; i ¼ 1; 2; . . . ; 8; ð1:1Þ
where wn and xn are the original particle weights and positions. The bilinear particle interpolation functions ki,
which correspond to cell corners with coordinates (xi,yi,zi), are given by
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ki ¼ 1� jxn � xij
Dx

� �
1� jyn � yij

Dy

� �
1� jzn � zij

Dz

� �
: ð1:2Þ
We replace the original N particles with M particles at positions xm and with weights wm such that the grid
weights are conserved, i.e.
XM

m¼1

wmkiðxmÞ ¼ Qi: ð1:3Þ
We note that the property Rki = 1 ensures conservation of total charge as well. We now require a function
G(x) to describe the distribution of weights such that wm = G(xm). Following Ref. [4] we choose (in 3D)
GðxÞ ¼
X8

j¼1

gjkjðxÞ; ð1:4Þ
although other weighting schemes are possible. Substituting Eq. (1.4) into Eq. (1.3), we obtain
X8

j¼1

gj

XM

m¼1

kjðxmÞkiðxmÞ ¼ Qi: ð1:5Þ
We now solve the system of eight linear equations (1.5) for coefficients gj, from which we obtain the particle
weights for the M replacement particles
wm ¼
X8

j¼1

gjkjðxmÞ: ð1:6Þ
The system of linear equations requires at least M,N P 2D for a solution where D is the dimensionality (e.g.
D = 3 for 3D). We note here that the method does not ensure that all the M replacement particle weights will
be greater than zero, a physical requirement. Depending on the distribution of the initial N particles within the
cell, and the choice of locations for the replacement particles, cases can occur that give rise to weights <0, a
clearly unphysical result, or to very small weights that result in particles with unreasonably large momentum
and energy. We discuss this point further below.

2.2. Momentum conservation

Having chosen the particle locations xm and calculated the M weights wm, similar calculations are per-
formed to assign each of the three components of the replacement particle momenta. The grid momenta in
the x-direction (the two other directions are similarly obtained) are given by
P xi ¼
XN

n¼1

wnpxnkiðxnÞ; i ¼ 1; 2; . . . ; 8; ð1:7Þ
where pxn are the original particle momentum in the x-direction and the bilinear interpolation functions ki are
again used. As before, we choose a weight function
HðxÞ ¼
X8

j¼1

hjkjðxÞ; ð1:8Þ
and use the conservation of grid momenta to obtain the system of linear equations for the coefficients hj
X8

j¼1

hj

XM

m¼1

kjðxmÞkiðxmÞ ¼ P xi; i ¼ 1; 2; . . . ; 8: ð1:9Þ
Solving for hj, we obtain the x-momentum for the mth particle
pave
xm ¼

1

wm

X8

j¼1

hjkjðxmÞ: ð1:10Þ
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We use the superscript ‘‘ave’’ to denote the fact that to this point we have conserved momentum only in the
average sense. The random (or thermal) components of the pxm are lost in the sums of Eq. (1.7). They are rein-
troduced into the replacement particle momenta pxm as described in the next section. Here, there is no require-
ment on the sign of the particle momentum. It is actually the weighted momentum of the macroparticles that is
solved for, and the particle pave

xm determined by dividing by wm. Thus, a very small particle weight can result in
undesirably large momentum and energy. Such cases were seen in numerical tests and prompted a modifica-
tion of the algorithm described in the following sections.

2.3. Energy conservation

To this point, the calculated momentum distributions of the replacement particles only preserve the average
properties accounting for local gradients. These distributions are thus strongly peaked about some average
value. No account of possible random or thermal energy in the original distribution has been taken, and
energy has not yet been conserved. The momentum (again taking the direction x as an example) of each
replacement particle is perturbed by adding a random contribution pran

x (proportional to a parameter b)
wmpxm ¼ wmpave
xm þ bpran

x ðxmÞ; ð1:11Þ

where in order to continue to preserve conservation of grid and total particle momenta we require
XM

m¼1

kiðxmÞpran
x ðxmÞ ¼ 0: ð1:12Þ
We construct the pran
x ðxmÞ according to
pran
x ðxmÞ ¼ psam

xm þ
X8

j¼1

bjkjðxmÞ; ð1:13Þ
where the psam
xm are random contributions sampled from the appropriate distribution as described below. The

additional sum involving the coefficients bj is added in order to preserve momentum conservation. Substitution
of Eq. (1.13) into (1.12) gives
X8

j¼1

bj

XM

m¼1

kjðxmÞkiðxmÞ ¼ �
XM

m¼1

kiðxmÞpsam
xm : ð1:14Þ
This process is repeated for the y- and z-momenta. We now equate the relativistic energy of the original N
particles to the energy of the M replacement particles
XN

n¼1

wn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

xn þ p2
yn þ p2

zn

q
¼
XM

m¼1

wm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

xm þ p2
ym þ p2

zm

q
; ð1:15Þ
which gives a single non-linear equation for b through Eq. (1.11). A simple Newton–Raphson solve is used to
find b. There is no guarantee of a real solution; however, in numerical tests to date, convergence failures have
been extremely rare and a relative energy conservation error <10�5 is usually obtained in <10 iterations. A
convenient choice for the initial guess for b, based on a non-relativistic energy calculation in Ref. [4], expedites
the convergence.

2.4. Distribution functions

A key aspect of our APM algorithm is the method of choosing the momentum perturbations pxm which are
added to the original ‘‘average’’ momenta in the energy conservation calculations. These are chosen to closely
approximate the original momentum distribution. It should be noted that any method for the reconstruction
of a distribution requires a sufficient statistical sample. While highly problem dependent, we have found
empirically that N P 100 and M P 50 give reasonable accuracy for gas breakdown simulations. One
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approach we have taken involves the use of a set of analytic functions to approximate the momentum distri-
butions about the mean, f(u), of the set of particles to be coalesced. We make use of a uniform distribution
f unifðuÞ ¼ 1

2
ffiffiffi
3
p ; �

ffiffiffi
3
p
6 u 6

ffiffiffi
3
p

; ð1:16Þ
Gaussian distribution
f GðuÞ ¼ 1ffiffiffiffiffiffi
2p
p exp � u2

2

� �
; ð1:17Þ
and distributions with large wings of the form
f kðuÞ ¼ ck

p
1

1þ u2

2k�3

� �k ; ð1:18Þ
for k = 2,3, . . . ,K. To date, we have considered only symmetric distributions and have used momentum cutoffs
of ±7r in the Gaussian and large wing cases. In applications thus far, we have used k = 2,3,4,6,8 and 10
which gives us a set of eight possible distributions. The f(u) appropriate in a particular case is identified as
follows. For each distribution in the set, we can associate a unique value of the ratio R of the fourth to the
square of the second velocity moments
R ¼
R

u4f ðuÞduR
u2f ðuÞdu

	 
2
; ð1:19Þ
where it is understood that the variable u is measured from the mean of the distribution. The ratio R is a mea-
sure of the ‘‘peakedness’’ of the probability distribution. (In probability theory, R-3 is called the ‘‘Kurtosis’’ or
‘‘excess Kurtosis’’ of the distribution.) From the original set of N particles we calculate
RN ¼
PN

n¼1wnðpxn � hpxiÞ
4

PN
n¼1wnðpxn � hpxiÞ

2
h i2

; ð1:20Þ
and select a single distribution for which R is closest to RN from the set of possible distributions defined above.
This process establishes a distribution shape which is then sampled to determine the individual momenta.

The original distribution shape is thus preserved in a statistical sense. Our algorithm at present handles dis-
tributions symmetric about the mean, but it is straightforward to generalize for asymmetric distributions. This
‘‘fitted’’ function approach is useful for problems where fine detail in the distributions is either not expected or
inconsequential.

For problems where finer details in the distribution and correlations in the three directions are important,
we employ a method of sampling the original N particle momentum distribution. One such problem involves
gas interaction and breakdown where energy losses due to ionization and excitation are important. In these
problems, we construct a 3D velocity space from the original particles that is sampled M times as
Z pn0

0

f dis dp0 ¼
Pn0

n¼1wnPN
n¼1wn

¼ r; ð1:21Þ
where r is a random number from 0 to 1 giving the random momentum vector pran
m ¼ ðpxn0 � pave

xm , pyn0 � pave
ym ,

pzn0 � pave
zm Þ, where the local mean momentum has been subtracted out. This ‘‘discrete’’ method, to a large ex-

tent, preserves the original phase space correlations and asymmetries.

2.5. Treatment of fluid particles

The hybrid code LSP has the capability of describing the equations of motion and energy via a PIC fluid [7].
In this case, the particles are assumed to move as an ensemble with local mean velocity. There is no random
momentum about this mean, but an internal energy or temperature is carried by each particle. We can treat
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the temperature in a similar way as the charge since they are both scalar quantities which are interpolated to
the grid corners
T i ¼
XN

n¼1

wnT nkiðxnÞ: ð1:22Þ
Using the identical treatment found in Eqs. (1.1)–(1.6), the temperature Tm can be found for each replacement
particle.
3. Numerical tests

Several numerical tests have been carried out with simulations involving neutral gas ionization resulting in
rapid growth of the number of simulation particles. In these cases, the grid was swept periodically and those
cells containing more than 100 particles were coalesced to typically M = 25. The original choice of a uniform
sub-cell grid for placement of the M particles (noted at the beginning of Section 2) resulted in a large number
of cases with either negative or small weights such that the corresponding particle momentum and energy were
unphysically large. We determined that the source of the problem was cells in which the original distribution
of weights was highly non-uniform, and could not accurately be represented by a uniform replacement particle
distribution. To address this problem, we numerically binned the original particle weights on a sub-grid and
then placed the replacement particle positions to more accurately reflect this spatial distribution. This is
achieved as follows. We first establish a ‘‘target’’ mean replacement weight according to
wtmean = M�1Rwn = M�1Wtotal. Then the weight wsc is calculated for each sub-cell, and j replacement particles
are laid down randomly within that sub-cell such that (j � 0.5)wtmean < wsc < (j + 0.5)wtmean. To within the res-
olution of the sub-grid, the replacement particle spatial distribution approximates the original. With this mod-
ification, test simulations have achieved cell coalescence at a 98% success rate. With these improvements, the
dominant computational expense is that of sorting particles to each grid cell. Because the APM calculation
typically requires the computational time associated with a simulation time step, an interval for the APM
of 100–500 does not significantly slow the simulation.

3.1. Single-cell algorithm test

As an illustration of the APM method, presented here are detailed results from coalescence on a single cell
originally containing 200 particles. The particles were given random weights and laid down non-uniformly
within the cell (see Fig. 1) in order to test the method of determining replacement particle positions described
above. A 7 · 7 sub-grid was used and the method resulted in the distribution of positions shown in Fig. 1(a).
(The number of replacement particles approximates the number of sub-grid cells, but can be greater or less
than that number by a few. In the particular example shown in Fig. 1(b), M = 47.) The non-uniformity of
the initial distribution is reflected in the positions of the replacement particles, resulting in a reasonably uni-
form set of replacement particle weights. The M weights varied from 0.69 to 1.16 times the average weight, and
the potential problem of unphysically large momenta was thus avoided.

The reconstruction of the x-momentum distribution of the initial 200 particles is shown in Fig. 1(c). The
initial momenta were selected randomly from a Gaussian distribution with average value 0.01 and standard
deviation 0.002. Following the application of grid-momentum conservation (Eqs. (1.7)–(1.10)), the x-
momenta of the M replacement particles were distributed as shown in Fig. 1(c). At this point, it is clear that
momentum has been conserved only in the average sense—the replacement particle distribution is strongly
peaked near the average and bears no resemblance to the original Gaussian. The final step in the process is
the energy conservation procedure of Eqs. (1.11)–(1.15) and (1.20). This procedure results in the x-momentum
distribution that reproduces the original distribution at least in a statistical sense. This was checked by per-
forming the coalescence process 100 times with only random variation between trials. When this process
was repeated with increasing particle number, the original and replacement distributions approach each other
in both magnitude and shape as expected. Below we present results from three applications of the APM algo-
rithm in 2D PIC plasma simulation.



Fig. 1. The APM test is illustrated for a single cell of particles with most residing the lower left quadrant. The initial (a) and replacement
(b) particle positions are plotted. In (c), the initial momentum distribution, the replacement particle distribution after the momentum
conservation (mom con) phase and the replacement distribution after the final energy conservation (energy con) phase are plotted.
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3.2. Streamer propagation problem

In this section, we test the utility of the APM algorithm by simulating the evolution and dynamics of a
plasma streamer [6] in 1 atm. of hydrogen. The LSP implicit collisional electromagnetic particle method
[7,8] is used in 2D cylindrical (r,z) coordinates to model the streamer propagation. Energy-dependent cross
sections for electron interaction (treated in Monte Carlo fashion) with neutral hydrogen include impact ion-
ization, elastic scattering and inelastic energy loss. Coulomb collisions between all charged particles assuming
Spitzer collision frequencies are also followed. This model follows the streamer propagation and evolution
from an initially low density localized electron swarm (seed population) to high density (many orders-of-mag-
nitude in number density). Because electrons with energies above the ionization potential of the neutral gas
molecules have the greatest energy loss due to inelastic collisions, the electron distribution is non-Maxwellian.
Thus, it is a good test case for studying the sensitivity of the streamer propagation to the choice of APM
energy distribution.

In these calculations, a coaxial wave guide section is driven by a voltage wave giving electric fields of
roughly 30 kV/cm across an 8-mm anode–cathode (AK) gap. A 3 · 108 cm�3 plasma was initialized 1 mm
from the cathode (at z = 8 mm) on axis as shown in Fig. 2(a). Typically, a weak streamer initially formed a
small distance from the seed location. As the streamer propagated and the density increased, eventually the
electrons in the streamer tail became anchored in space by the increasing space charge. At this point the den-
sity of the plasma electrons and ions became comparable and the plasma began to shield out the electric field
within the streamer body. The electric field is enhanced at the streamer edges to roughly twice the initial field in
the AK gap. The electron temperature at the edges is roughly 4 eV which enables a weak avalanche that sus-
tains the streamer. The streamer front velocity was roughly 20 cm/ls.

Because the problem involves avalanche ionization with each electron impact that results in an ionization
event producing a new electron–ion pair, an increase in plasma density produces a corresponding increase in
particle number. Given the 3 · 108 cm�3 initial seed density, following the streamer density to greater than



Fig. 2. The plasma ion density at (a) t = 0, (b) t = 14 ns for the simulation without coalescence, (c) t = 14 ns with APM, and (d) t = 14 ns
with pairwise coalescence.
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3 · 1011 cm�3 is problematic. In these simulations, we reduce the rate of new particle production by stipulating
that an ionization probability P = fngasrionveDt (ngas is the neutral density, rion is the ionization cross section
for the electron of speed ve and Dt is the simulation time step) and that the charge of the ionization pair is
qion = jqej/f, where qe is the impacting macroparticle electron charge. This is a reasonable approximation if
nerionveDt� 1. For these calculations we take f = 0.5. In this problem, however, the particle number which
begins at 104 reaches >106 after 14 ns. The initial ion density and density at 14 ns are plotted in Fig. 2 for three
simulations: no coalescence, APM, and pairwise coalescence. The streamer propagates towards the anode
(from right to left) due to the electron drift. We find that by 14 ns the streamer front in all three cases has
moved 3 mm and the density has exceeded 1014 cm�3. Thus, the two coalescence methods give satisfactory
agreement with the ‘‘no coalescence’’ simulation and result in minimal differences to the underlying physical
processes.

The basic timing information of the three simulations is summarized in Table 1. The target replacement
numbers per cell, M = 225 in the APM and M = 200 in the pairwise replacement, were chosen to give roughly
the same time-dependence of the macroparticle number over the entire simulation volume as seen in Fig. 3.
For a parallel simulation with four processors, both coalescence schemes dramatically reduced computational
runtime. The overall runtime to 14.6 ns for the APM simulations was 10% of the runtime of the simulation
Table 1
Timing information of the streamer propagation simulations performed on four processors

Coalescence method Target number Success rate Run time to 14.6 ns (h)

None NA NA 11.90
APM (discretized) 225 0.978 1.10
Pairwise (0.005 energy tolerance) 200 0.39 1.78
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with no coalescence. The pairwise method was 16% that of the no-coalescence simulation. The pairwise
method is somewhat slower because each particle is compared with all other particles in the cell to find suitable
pairs. The computation time thus scales nearly as the square of the macroparticle number. In Table 1, the coa-
lescence success rate is defined as the ratio of the number of successful particle coalescences to the number of
particles attempted. Note the much lower success rate of the pairwise method despite the higher 0.005 energy
tolerance on matched particles. The tolerance for the APM method was 10�6. In the APM method, the lowest
acceptable replacement particle charge was 0.2 of the mean (this test caused 67% of the failures) and the high-
est acceptable particle energy was 1.5 times the maximum of the original set (this test caused 33% of the
failures).

3.3. Relativistic electron-beam driven gas breakdown

In this test, we look at electron-beam driven gas breakdown. Paraxial electron diodes with gas transport
cells have been used to focus intense electron beams onto a high-atomic-number target producing bremsstrah-
lung radiation [9]. Ideally, the self fields of the electron beam are completely neutralized by the gas conduc-
tivity. In practice, direct impact ionization by the beam and avalanche from the electron secondaries drive
a breakdown of the gas that rapidly increases the plasma conductivity. Because of the delay in the conductivity
rise and incompleteness of the breakdown, gas-filled focusing cells typically operate with a small but finite and
slowly increasing net current (sum of the plasma and beam currents) [8,10]. This non-ideal effect results in an
axial sweep of the beam focal position away from the bremsstrahlung converter at the end of the gas cell.

In this test, a 35-kA, 10-MeV (peak parameters) electron beam is produced in a diode with a 1-cm radius
spherical cathode with a 5-cm AK gap as shown in Fig. 4. The voltage in the diode rises in 20 ns to the 10-MV
flat top. Due to the electromagnetic fields in the diode AK gap, the beam at peak voltage enters the gas cell
with a nearly uniform density, a 17-mm outer radius and a 10-cm focal length (the gas cell is thus also 10 cm in
Fig. 3. The (a) electron macroparticle number, (b) total ion charge, and (c) total electron energy in the simulation are plotted for the three
streamer propagation simulations.



Fig. 4. The diode and gas cell configuration for 1-torr nitrogen is shown for the electron beam focusing test at t = 20 ns. The diode voltage
rises in 20 ns to a 10-MV peak producing a 35-kA converging electron beam. Individual macroparticles are color-coded to their total
energy in MeV.
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length). The beam first passes through a 250-lm-thick Al anode foil which elastically scatters and slows the
electrons.

The gas breakdown evolution is again studied with implicit kinetic PIC simulation that includes energy-
dependent cross sections for electrons interacting with an initially neutral nitrogen gas at 1-torr pressure.
Fig. 5. The net current after 10 ns for the (b) no coalescence, (c) APM-discrete momentum distributions, and (d) APM-fitted distributions
are plotted. In (a), the electron macroparticle number is plotted for the three simulations.
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Because the charge neutralization is nearly perfect, minimizing the net current (sum of the beam and plasma
return current) is key to the performance of the gas cell. We compare three simulations: a case with no coa-
lescence, one with APM but using the discrete particle distribution (Eq. (1.21)) for the replacement momen-
tum, and one with APM but using the fitted momentum distribution (Eqs. (1.16)–(1.20)). In both APM
simulations, the coalescence was triggered by particle-per-cell number N > 80 with M = 49 target number
per cell. In Fig. 5(a), we see that the electron macroparticle number exceeds 106 within 10 ns without coales-
cence. In contrast, the two APM simulations limit the number to <3 · 105 for the entire simulation. The net
currents after 10 ns are plotted in Fig. 5 showing good agreement between all three simulations after 10 ns
(good agreement was found between the two APM simulations for all times indicating the fitted distributions
were sufficiently accurate). The net current structure in the gas cell center as well as the unneutralized sheath at
the wall is reproduced. The success rate for coalescence was 80% for both APM simulations.

We attempted to use the pairwise method on this problem as well. Within 10 ns, the simulation became
numerically unstable. The instability was triggered by the charge correction calculation required by the pair-
wise method that introduced significant noise into the simulation and disrupted the physics. We were able to
avoid this problem by turning off the correction and ignoring the charge conservation errors. The simulation
results in this case were comparable to the previous test in both accuracy and efficiency (APM method again
being more efficient).
Fig. 6. The initial proton density for the three simulations of an expanding plasma in a 1-torr axial magnetic field is shown in (a). The
proton density after 120 ns for the (b) ‘‘no fission-small’’, (c) the ‘‘no fission-large’’, and (d) the ‘‘fission’’ simulations are also plotted.
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3.4. Magnetically confined plasma with APM particle fission

In the final test, we examine a low-b plasma (here, b is the usual ratio of thermal to magnetic pressure) con-
fined in a 1-T axial magnetic field. Shown in Fig. 6(a), the 1-cm radius, 1-keV, 1012 cm�3 density plasma is
loaded at rest immersed in the Bz field. We simulate the plasma in a 5-cm cylindrical tube with 2D Cartesian
coordinates with an energy conserving but explicit particle push. The plasma skin depth (5 mm) is coarsely
resolved with a 2.5-mm grid size in both directions. The simulations have time step xpDt = 0.2 and were
run for 120 ns. Because the plasma expands into vacuum along the field lines, the number of particles per cell
decreases without APM. This case is ideal for testing the fission aspect of APM. We compare the results of
three simulations. The first (‘‘no fission-small’’) has no APM and initially 16 particles-per-cell for both
electrons and protons. The second (‘‘no fission-large’’) also has no APM but 144 particles-per-cell per plasma
species. In the third simulation, labeled ‘‘fission’’, the APM algorithm attempts to maintain the M = 14 par-
ticles-per-cell per species and has total particle number comparable to the ‘‘no fission-large’’ simulation by
120 ns.

A comparison of the proton densities in the three simulations is shown in Fig. 6. We can see the ‘‘no fission-
small’’ simulation results in a thinner spatial distribution because the tail of the proton energy distribution is
underpopulated. The simulation with larger particle number more closely resembles the fission simulation. In
Fig. 7(a), the proton macroparticle number versus time shows the increase in the macroparticles for the fission
simulation. Also shown is the total simulation energy error (out of 0.0014 J) for the three simulations.
Although all three have energy error of order 0.1% after 120 ns, the fission case and the ‘‘no fission-large’’
are again more closely paired indicating a roughly 3· smaller error than the ‘‘no fission-small’’ simulation.
Fig. 7. For the immersed expanding plasma simulations, (a) the macroparticle number, (b) simulation energy error out of a total 0.0014 J,
and (c) the proton energy distribution after 120 ns are shown. The three cases refer to no APM fission with a small initial particle number
(830), no fission with a large number (7380), and APM fission beginning with the small number.
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Finally, in Fig. 7(c), the proton energy distribution after 120 ns is shown for the three simulations. The dis-
tribution in the fission simulation evolves a higher energy tail similar to the ‘‘no fission-large’’ simulation con-
sistent with the broader spatial wings shown in Fig. 6. Thus, the APM algorithm when used to produce more
particles can be effective at maintaining good particle statistics. One caveat is that when applying this tech-
nique to the electrons in this particular problem, the electron velocity distribution perpendicular to Bz does
skew from the other two simulations. This is due to the disparity in the electron cyclotron radius
(0.007 cm) compared with the simulation cell size. Thus, applying the APM to particle species with spatially
under-resolved cyclotron orbits can lead to errors.

4. Conclusions

We have demonstrated a practical particle management scheme that is useful for problems where the
momentum distribution function shape is important. The APM algorithm, which builds on the framework
of Ref. [4], was tested in two stressing gas breakdown problems and a plasma expansion problem and proved
to be efficient and to accurately reproduce the momentum distribution functions given adequate spatial reso-
lution. To the times when the simulation results could be compared with and without coalescence, the APM
enabled >10· faster computation speed without sacrificing accuracy. For decreasing particle number, the
APM method is more efficient and reliable than the pairwise method in the two test problems considered here.
The method can also be used to increase particle number for problems that require better statistics such as in
the expanding plasma simulation. The ability to keep the particle number-per-cell nearly constant provides for
more efficient parallel computation.
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